Ganglioside GM1 Deficiency in Effector T Cells From NOD Mice Induces Resistance to Regulatory T-Cell Suppression
نویسندگان
چکیده
OBJECTIVE To detect GM1 deficiency and determine its role in effector T cells (Teffs) from NOD mice in establishing resistance to regulatory T-cell (Treg) suppression. RESEARCH DESIGN AND METHODS CD4(+) and CD8(+) Teffs were isolated from spleens of prediabetic NOD mice for comparison with similar cells from Balb/c, C57BL/6, and NOR mice. GM1 was quantified with thin-layer chromatography for total cellular GM1 and flow cytometry for cell-surface GM1. Suppression of Teff proliferation was determined by application of GM1 cross-linking agents or coculturing with Tregs. Calcium influx in Teffs was quantified using fura-2. RESULTS Resting and activated CD4(+) and CD8(+) Teffs of NOD mice contained significantly less GM1 than Teffs from the other three mouse strains tested. After activation, NOD Teffs resisted suppression by Tregs or GM1 cross-linking agents in contrast to robust suppression of Balb/c Teffs; this was reversed by preincubation of NOD Teffs with GM1. NOD Teffs also showed attenuated Ca(2+) influx via transient receptor potential channel 5 (TRPC5) channels induced by GM1 cross-linking, and this, too, was reversed by elevation of Teff GM1. CONCLUSIONS GM1 deficiency occurs in NOD Teffs and contributes importantly to failed suppression, which is rectified by increasing Teff GM1. Such elevation also reverses subthreshold Ca(2+) influx via TRPC5 channels, an essential aspect of suppression. Our results also support a critical role for galectin-1 as a GM1 cross-linking counter-receptor that fittingly is upregulated and released by Tregs during activation. These findings suggest a novel mechanism by which pathogenic Teffs evade regulatory suppression, thereby leading to autoimmune β-cell destruction and type 1 diabetes.
منابع مشابه
Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice
Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-...
متن کاملCross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis.
Several animal autoimmune disorders are suppressed by treatment with the GM1 cross-linking units of certain toxins such as B subunit of cholera toxin (CtxB). Due to the recent observation of GM1 being a binding partner for the endogenous lectin galectin-1 (Gal-1), which is known to ameliorate symptoms in certain animal models of autoimmune disorders, we tested the hypothesis that an operative G...
متن کاملDisruption of the homeostatic balance between autoaggressive (CD4+CD40+) and regulatory (CD4+CD25+FoxP3+) T cells promotes diabetes.
Although regulatory T cells (Tregs) are well described, identifying autoaggressive effector T cells has proven more difficult. However, we identified CD4loCD40+ (Th40) cells as being necessary and sufficient for diabetes in the NOD mouse model. Importantly, these cells are present in pancreata of prediabetic and diabetic NOD mice, and Th40 cells but not CD4+CD40(-) T cells transfer progressive ...
متن کاملTNF receptor 1 deficiency increases regulatory T cell function in nonobese diabetic mice.
TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, th...
متن کاملEffector and Naturally Occurring Regulatory T Cells Display No Abnormalities in Activation Induced Cell Death in NOD Mice
BACKGROUND Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS Both effector (CD25(-), FoxP3(-)) and suppressor (CD25(+), FoxP3(+))...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 60 شماره
صفحات -
تاریخ انتشار 2011